Articles

Suspended oil online monitoring (WQMS)

aquagas_logo_500px

 

The benefits of accurate suspended oil (oil in water) online monitoring are countless with regards to process and wastewater management, especially in the oil and gas industry. Continuous hydrocarbons monitoring enables complete environmental compliance, detailed process optimisation and reduced operating costs often by the use of a single instrument.

  • Improves systems nominal capacity
  • Ensures safe purge and filtration operations
  • Eliminates manual handling and intermittent attendances
  • Decreases oil losses and hydrocarbons released
  • Prevents bacterial contamination and equipment corrosion
  • ATEX and application specific engineered versions available
  • Maintenance Free, purge time counter and auto-stop function
  • Automated fully programmable system
  • Suitable for all type of Hydrocarbons
  • Intuitive interface through touch screen

Discharge management

OPAL-OIl Pollution Alarm - WQMS

Oil platforms, refineries and Tank farms generate produced water which requires close management. For every country in Oceania, there are regulations setting limits on the amount of hydrocarbons than can be disposed of overboard and a range of different lab techniques that can be used for reporting this amount. The OPAL and PAUTBAC II from SERES IR based analysers can provide continuous measurement of the oil concentrations in the discharge water from oil and gas processing and storage facilities.

Process optimisation


The OPAL and PAUTBAC II from SERES are respectively side stream analyser and oil tank de-watering systems based on IR light scattering. They not only can provide you with extremely accurate monitoring, but also sense for changes in the size of oil droplets and therefore in process conditions. Using the built in IR detector, the OPAL and PAUTBAC II analysers enable early detection of oil traces in all type of water, ensuring fast overview of the process conditions.
As the volume of your discharge water increases, you need a system that will meet your changing demands, work reliably and with minimal operator input required. Having provided hundreds of online monitoring systems worldwide, SERES is the best positioned to assist you along with your water management plan.

Oil Pollution Alarm

Every platform, refineries, industrial process (…) has to recover as much oil as possible, as efficiently as possible. In order to make improvements you need to understand how the current system is working. SERES Environnement manufactures the OPAL (IMO* certified) allowing real-time measurement of oil concentrations at the inlet and outlet of any separator, providing continuous on-line information about the effectiveness of your separators. The OPAL can also trigger a divert valve to route the produced water through a sand filter.

ODME OPAL

The OPAL is the last generation of detector designed for online and Real-time suspended Hydrocarbons monitoring. It uses Infra-Red scattering to enables early detection of oil in any type of water. Reagent’s free, the OPAL represents the most cost effective solution and matches a large range of application requirements.

* IMO International Maritime Organisation

Opal_Chassis_Base_120419

PAUTBAC II

automatic tank dewatering system

The PAUTBAC II is the best suited system to automate water drainage from oil storage tank. With its capacitive probe, it is a flexible, economical and reliable system capable to handle the crucial but time consuming task of oil tank dewatering without the need for human attendance. PAUTBAC II is designed to be install online and is a fully automatic system with adjustable threshold form 5 to 25% and no tank modifications required

 

AQUAGAS - WQMS -PAUTBAC3

A Teflon coated capacitive probe is inserted in an explosion proof circulation chamber mounted in the tank draining pipe work. The probe measures the dielectric constant to detect the interface between oil and water. The control unit processes the probe signal to control the tank purge valve operation.

 

key facts about automatic dewatering systems

  • Avoid product losses
  • Reducing amount of hydrocarbons discharged on waste water / cost for waste water treatment
  • Increase tanks capacity
  • Prevents tank corrosion
  • Eliminates labour costs dues to manual operation
  • Reduce risk of personal exposures to chemicals

 

PAUTBAC advantages

  • Completely automatic dewatering process
  • No maintenance needed
  • No calibration needed
  • Elimination of tank penetration
  • Easy installation without having to drain tank
  • Highly sensitive and reliable

 

AT THE HEART OF INNOVATION

SERES environnement is continually implicated in the process of technological innovation. « We constantly re-invest in research and development in order to provide our clients with the most advanced technologies. For SERES, the notion of change is a permanent challenge. We work in partnership and collaboration with French and foreign research centres (such as the CNRS – the French National Centre for Scientific Research), Engineering Colleges and Universities. » SERES environnement makes 60% of its turnover on the export market in more than 35 countries with references in the Oil & Gas, Water treatment, Cement and Glass industry, Energy and large manufacturing companies…

SERES Environnement References

 

Universal Gas Sampling System

 

complete gas analysis equipment from one source

Sampling is a key factor to ensure representative analysis and essential to preserve the good status of your monitoring system. AquaGas Monitoring Systems introduces Ankersmid Sampling BVBA (Belgium) stationary sampling equipment designed for Continuous Emission Monitoring (CEMS) and process online analysis.

AquaGas solutions are available as system components for integration into third party systems or as complete turn-key systems. Our systems combine the best technologies available to extract, transfer, and condition samples from stack or crucial process locations prior to analysis.

ACC 400 COMPRESSOR GAS COOLER

Ankersmid Sampling Patented design offers a wide selection of modular options and combinations essential to optimise sampling performances and secure the availability rate of CEMS and process monitoring equipment.

Our adaptative product range is versatile and suits a large variety of applications including:

  • Cement Plant
  • Power Station (Coal fired, Diesel…)
  • Waste Incinerators
  • DeNOx, deSOx and other flue gas treatment process
  • Combustion and Process control
  • Syngas and biogas plant
  • Refineries…

Heated Gas Sample Probes

  • 50°C to 320°C with PID controller or 0-180°C self-limiting heating cartridges
  • High & Low temperature alarm and RS485 ModBus
  • Wide variety of filter materials, length and porosity
  • PTFE demister for wet scrubbers
  • Blowback function for higher dust load up to 10g/Nm3
  • The test gas injection port according to emissions standards (EN14181)
  • Calibration gas feeding via the filter element of the gas sample probe
  • Large selection of heated and unheated sample tubes (incl. ATEX)
  • Easy access to filter, inner stack sample tube, and top-filter
  • Efficient and fast maintenance and routine inspection tasks

Heated Lines

AHL Heatedline-v2

  • 50°C to 200°C Heated Line with PID controller
  • 0-180°C self-limiting heat trace Sample line
  • High & Low temperature alarm and RS485 ModBus
  • Large choice of options and combinations (incl. ATEX)
  • PTFE or SS316 inner tube
  • Multiple inner tubes for calibration, air and sample flows
  • No cold spot
  • Large selection of temperature sensor
  • UV rated PA12 , Polyamide braiding or highly flexible smooth silicon outer jacket
  • Maintenance free and delivered ready for installation

Gas Conditioners

  • 4°C +/-0.1°C dew point stabiliser
  • 19 inch rack  or wall mount units
  • High & Low temperature alarm and RS485 ModBus
  • Large choice of options and combinations (incl. ATEX)
  • Ankersmid Sampling patented NEO® heat exchanger design
  • Multiple stream capabilities
  • PFA® coated gas path and heat exchanger
  • ASS integrated rack mount complete stationary sampling system
  • Low maintenance and reduced operating cost
  • High-performance continuous condensate purge
  • AOX, TUV certified 99% conversion efficiency NOx converter

Gas Sampling Pumps

  • High performance PTFE gas sampling pump
  • 5 to 30 lpm flow range
  • 5 to 240°C operating temperature range
  • Designed for a large range of analytical applications (incl. ATEX)
  • Large choice of options and combinations

Speciality Filters

  • Universal all purposes filters
  • Deep acting particulate filters
  • Calibration gas humidifiers
  • Scrubbers and adsorption material
  • Liquid stop, condensate drain…
  • Built-in liquid alarm sensor, condensate purge, heater…

Ankersmid Sampling

  • Universal

    CEMS integration made easy

  • Performant

    Field proven, high quality, durable Ankersmid Sampling BVBA patented designs

  • Modular

    Comprehensive range of gas sampling equipment from one source

  • Efficient

    Easy to install, maintain and operate

AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

contrôle environnemental

OFCEAS & Low Pressure Sampling

Continuous Emissions Monitoring and Process Control

Starting in 2012, AP2E launched the industrialisation of the ProCeas® and LaserCEM® product range, the continuous and multigas analysers using OFCEAS* patented laser spectrometry. This analyser range is based on several innovations, providing very high performance in terms of response time (less than a few seconds) and great accuracy of the analyses (wide dynamic range from ppb to %):

OFCEAS, CONTINUOUS INFRA-RED LASER SPECTROSCOPY TECHNOLOGY

The ProCeas® and the LaserCEM® are based on the OFCEAS coupled to a Low Pressure Sampling LPS (100 mbar absolute) developed and patented worldwide by AP2E (France), for the online analysis of several key gases in industrial, environmental and OH&S applications. It provides measurements with a very high spectral resolution in addition to an analysis system with a simplified sampling (no heated line nor treatment of samples) and an interference-free, fast and sensitive analysis, regardless of the matrix of the gas to be analysed.

ProCeas

The OFCEAS technology essentially differs from the CRDS (Cavity Ring Down Spectroscopy or Spectroscopy by resonance damping time) technology by its feedback principle: a part of the emitted radiation is returned from the chamber to the laser, enabling the tuning of the laser and the cavity resulting a resonance phenomenon. With a volume of only 15 cm3, the measuring cavity or cell is equipped with mirrors whose reflectivity exceeds 99.99%, providing an optical path between 1 and 10 km (approx. 10 meters in conventional technologies). The immediate consequence of this phenomenon is the identification of very intense absorption peaks with a very narrow spectral width. Given that the source used is a continuous laser, the system presents very high measurement stability: there is no zero drift and no need for new calibrations.

LOW-PRESSURE SAMPLING SYSTEM

The Low Pressure Sampling (LPS) System allows reducing the sample dew point (vapour pressure) to prevent the risk of condensation. The sampling method is achieved by the use of a sonic nozzle which allows reducing the sampling pressure down to 100 mbar. In these conditions the ambient temperature is almost always above the dew point eliminating the risk of condensation.

r4

  • No Sample heated line required to eliminate condensation: low power consumption, no related ongoing maintenance
  • True Direct Extractive CEMS/Process analyser (no dryer or scrubber)
  • No risk of absorption/desorption typical of high SO2/SO3 application
  • Low pressure accentuate the gas finger print
  • Cost effective multipoint monitoring
  • Standard system comply with ATEX standards

The integrity of the sample is therefore ensured. The very low airflow ensures a verylow response time and a minimal contamination of the system.

OFCEAS Detection limits

All these points enable to both increase the detection sensitivity and  simultaneously reduce the noise, which permits the detection of gases at very low levels of sensitivity (traces of H2S – LOD under 50 ppb, or traces of H2O – under 1 ppm).

ProCeas

Complete pre-calibrated multicomponent (H2S, CO, CO2, H2, H2O, HCl, HCN, HF, N2O, NH3, O2 and CH4) laser Infrared Spectrometer designed for online monitoring of combustion process, natural gas (LNG), pure gas (trace) and ambient air (trace).

 

LaserCEM

The LaserCEM is a complete pre-calibrated multi-component (NO, NO2, NOx, SO2, CO, HCl, CO2, H2O, H2S, NH3, N2O, COS, SO3, CH4, HF) laser Infrared Spectrometer designed for Continuous Emissions Monitoring and compliant to standard EN 15267-3 : 2008 and QAL 1 de EN 14181 . With the announcement of the continuous measurement of SO3 (sulphur trioxide) at the exit of combustion units, AP2E represents the link from an industrial point of view between regulatory measurements (EMC) and optimizing production processes. If SO2 is now properly measured, it does not fully reflect the sulphur emissions from combustion units subject to this requirement. In the presence of oxygen, SO2 does in effect form sulphur trioxide (SO3), a gas that is much more corrosive than SO2. And other chemical phenomena occur, particularly in de-nitrification (DeNOx), which in the presence of ammonia may lead both to an over-consumption of ammonia and to filter blockages. Not measuring SO3 entails the under estimation of sulphur emissions, and also additional maintenance costs and over-consumption of reagents. To have continuous and precise knowledge of the SO2 / SO3 couple enables the operator to choose the controlling conditions for limiting the formation of SO3 and its indirect costs.

*Optical Feedback Cavity Enhanced Absorption Spectroscopy: technology developed and patented by the University Joseph Fourier (France), coupled to a Low Pressure Sampling (100 mbar absolute) developed and patented worldwide by AP2E, for the on-line analysis of different gases. By the end of 2010, after two years of R & D studies, the AP2E ProCeas® was the award recipient of the USA « R & D 100 » which rewards the 100 most innovative global technologies of the year.

 


AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

 

Online Process Monitoring in Biogas Plants

Why is process monitoring necessary?

Biogas plants are biological systems involving various interacting micro-organisms that anaerobically degrade organic matter. The main product is biogas, a gas rich in methane (CH4) that can be used as a renewable fuel for vehicles or to generate heat or electricity for local use or for use via energy distribution grids.

The degradation involves four consecutive biological processes: hydrolysis, acidogenesis, acetogenesis and methanogenesis.

 

Wasistbiogas

If one of these processes is negatively affected in any way there is an immediate influence on the other processes and the biogas plant can become unstable. Typical process failures include, among others, organic overload, hydraulic overload and ammonia inhibition. Process monitoring can help to understand what happens in a biogas plant and help to maintain a stable process. In many cases, a strongly inhibited micro-organism population or a total crash of the whole plant can have severe financial consequences for the biogas plant operator.

In general, process monitoring in anaerobic or other fermentation processes can help to:

  • Give an overall picture of the biogas process
  • Identify upcoming instabilities in anaerobic digester before a crash happens
  • Accompany a successful start-up or re-start of a plant

The costs of online monitoring are often much lower than the costs and lost revenue associated with re-establishing a biologically destabilised plant.

For example, if a biogas plant has totally crashed it may have to be emptied and filled again with new inoculum. This, together with the necessary start-up period, means that several months can be lost during which the plant could have operated at full load. The financial consequences can be devastating for the plant operator.

Key parameters in Biogas monitoring

Biogas plant

In biotechnological processes, the detailed monitoring of the fermentation product, in this case biogas, provides valuable information. Therefore, it is recommended to monitor both the volume of gas produced and the gas composition. With regard to process monitoring, a change in either gas production or gas composition can be an indicator of process imbalance.

Biogas primary constituents

  • CH4 and H2S measured during the methanation process give a good overall view of the performance of the degradation process and bacterial activity. A decrease in methane content can be a first sign of organic overload, provided that the feedstock mix has not recently changed. Similarly, a sudden increase in H2S can provoke process instability.
  • Simultaneous real-time monitoring of CH4, H2S and CO2 empower process automation (i.e. operation of scrubbers)
  • Before entering the distribution chain, the product must be qualified, again for economic reasons (excess H2S and/or CO2 in the CH4 would make it ‘sour’ and potentially corrosive enough to damage distribution infrastructure)
  • CH4, H2S, CO, CO2 and O2 Continuous Stack Emissions Monitoring required for environmental compliance

 

PROCEAS

Stationary Biogas Monitoring Systemslogo-ap2e

In general, a large variety of devices can be applied for measuring biogas production but in practice, as biogas is of variable gas composition, dirty, corrosive, wet, and produced at low pressure, measuring biogas volume and composition accurately is one of the most challenging parameters at a biogas plant. In the long run not properly designed systems can pose considerable problems due to corrosion, fouling or general deterioration when measuring raw biogas.

AquaGas Pty Ltd introduces the OFCEAS technology and Proceas BioGas analyser  designed by AP2e to address the analytical (online monitoring of biogas primary constituents) and operational (zero drift, minimum maintenance, no consumable, autonomous operation) biogas plants and methanation process monitoring requirements.

AP2e ProCeas BioGas

 

The ProCeas BioGas analyser features two patented technologies:

  • The OFCEAS IR Laser technology for enhanced specificity, selectivity, accuracy and stability (no instrumental response drift.):  The OFCEAS is a self-referencing spectrometer. This means that there is no need to re-analyse a zero and/or a span gas on a regular basis. The “zero” information is contained in the direct measurement spectrum while the “span” information is intrinsic to the analyser (pre-calibrated with 4 OD linear response).

OFCEAS - ProCeas BioGas

  •  The Low Pressure Sampling (LPS) system enabling low-cost installation thank to non-heated lines and reduced maintenance. Lowering the pressure of a gas sample reduces the bandwidth of the absorbance bands. At atmospheric pressure, simultaneous measurement of H2S (ppm’s) in presence of CO2 (10’s %), CH4 (10’s %) can be tainted by cross response / false positive due to spectral overlapping of CO2 and CH4 bands with H2S  information.  If operating at 100 mbar, all absorption bands have narrowed down to the point where there is no spectral overlap of the absorption bands. Cross response have been eliminated. 

OFCEAS Detection limits

When sampling gas from landfill, anaerobic digestion/bacteria and other fermentation processes, the use of a dedicated sampling system is necessary to ensure a specific sample preparation and to preserve your monitoring equipment. Another advantage of the LPS System is the ability to reduce the sample dew point (vapour pressure) to prevent the risk of condensation. The sample extraction is achieved by the use of a sonic nozzle. The sample is taken at a very low pressure (50 to 200 mbar abs, 100mbar nominal). At 100 mbar abs. the ambient temperature is almost always above the dew point eliminating the risk of condensation.

LPS biogas sampling probe

  • No heated line required to eliminate condensation: low power consumption, no related ongoing maintenance
  • Sample does not need to be treated – True Direct Extractive CEMS and Process analyser
  • No risk of absorption/desorption

The ProCeas offers sampling solutions tailored to the needs of the biogas production industry with automated sampling sequences and multipoint monitoring enabling fast, accurate and detailed analysis at various location with a single instrument: Raw biogas (1), processed biomethane (2), vented biogas (3) and stack emissions (4).

 

AP2e ProCeas multistreams

 

The Proceas Biogas Monitoring System is a cost effective online monitoring solution offering application specific features including:

  • Field proven technologies in the Biogas production industry
  • Simultaneous measurement of all primary constituents of Biogas
  • Fully automated standalone system (automatic calibration and sampling sequences)
  • Low Pressure Sampling (no sample condensation)
  • Deep particulate filtration
  • PFA and PTFE gas path (essential to avoid loss of components of interest)
  • Fast, accurate and reliable online analysis
  • No drift or deviation therefore minimal calibration requirements
  • Low-maintenance and user friendly system
  • Site specific sampling solutions

ProCeas Layout

The ProCeas analysers are manufactured and pre-calibrated by AP2e in France. The systems are built, integrated and tested in Australia by AquaGas. Standard systems are delivered fully integrated in a 19 inch rack suitable for installation in industrial settings (indoor 15-35C). For installation in hazardous area the BioGas Monitoring System is available in ATEX certified version.


 

ABYSS

Portable Biogas Analyser

Ankersmid Sampling

 

Short term measurement during start up conditions

The start-up of a biogas plant is a very sensitive process. Due to slow multiplication of some of the micro-organisms involved in anaerobic sludge and the consequent risk of hydraulic overload, the start-up of a biogas plant can take much longer than in other biotechnological processes. A start-up time of 1-2 months is nothing exceptional in biogas plants.

Therefore, the effort in process monitoring has to be highest during start-up. If the start-up is too fast, a sub-optimal biogas process can be the consequence because the most favourable micro-organisms have not multiplied in the biogas plant. In contrast, a slow start-up can cause a possible loss of income as time is taken to reach full load capacity. The frequency of the measurements should be increased during this crucial process steps.

Poster Process Monitoring in Biogas Plants-v1

The  ANKERSMID Portable Biogas Analyser is especially designed so that detailed gas analysis can be carried out at any time in any place. The entire gas conditioning system is housed in a compact and robust carrying case which ensures that the components can be removed easily and gas analysis performed in an efficient manner: quickly, safely and with a  minimum maintenance. This system ensures reliable sample preparation without loss and prevents damage on the  analysis system used downstream.

portable emissions measurement system-probe

The ABYSS Portable Biogas Analyser uses a dual beam Infra-red cell highly resistant to corrosive flue gases and harsh environments of operation.  Its light weight rugged enclosure fitted LCD screen, safety filter and Quick Connect fittings enables efficient short term measurement of emissions and process gas in waste recycling facilities, industrial fermentation plants and associated odour filtration systems.


AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

 

 

9 key parameters for the Chlorine and Soda production industry

Large-scale production of chlorine involves several steps and many pieces of equipment. The plant also simultaneously produces sodium hydroxide (caustic soda)hydrogen gas. A typical plant consists of brine production/treatment, cell operations, chlorine cooling & drying, chlorine compression & liquefaction, liquid chlorine storage & loading, caustic handling, evaporation, storage & loading and hydrogen handling.

BRINE

Key to the production of chlorine is the operation of the brine saturation/treatment system. Maintaining a properly saturated solution with the correct purity is vital, especially for membrane, diaphragm and mercuric cells. At several points in this process the brine is tested for hardness and strength.

After the ion exchangers, the brine is considered pure, and is transferred to storage tanks to be pumped into the cell room. The pure brine is heated to the correct temperature to control exit brine temperatures according to the electrical load. Brine exiting the cell room must be treated to remove residual chlorine and control PH levels before being returned to the saturation stage. This can be accomplished via dechlorination towers with acid and sodium bisulphite addition.

Failure to remove chlorine can result in damage to the ion exchange units. Brine should be monitored for accumulation of both chlorate anions, sulphate anions, and either have a treatment system in place, or purging of the brine loop to maintain safe levels, since chlorate anions can diffuse through the Membrane and contaminate the caustic, while sulphate anions can damage the anode surface coating.

SERES Analysers tailored to the need of Soda and Chlorine production plant

Your facilities operate 24/7. However, you can be operating blind if your essential assets are monitored infrequently using manual measurements. AquaGas introduces SERES Environnement cost-effective monitoring solutions of 9 parameters enabling anytime, online insight into your essential assets to help you prevent unplanned shutdowns, improve reliability, and reduce maintenance costs.

water analyser onyx


Parameters targeted

  • CA+MG in Brine (0.1 TO 5 MG/L)
  • CA+MG TRACES in Brine (5 TO 100 (G/L)
  • NAOH / NA2CO3 in Brine (Ranges according to process)
  • SO4 in Brine (Ranges according to process)
  • ACTIVE CHLORINE CL0CL+ in Brine and chemical effluents (Ranges according to process)
  • CHLORIDES TRACES in a Sodium Solution, 30% and 50%
    (5 TO 100 MG/L)
  • NH4+ in Brine
  • NAOH/NA2CO3 in a Sodium Hypochlorite /Soda medium for the control of residual Alkalinity on a tail- gas exhaust in electrochlorination treatment tower (50 to 250 G/L NA)
  • NCL3 in Chlorine, in association with the determination of NH4, Chlorine precursor in Brine, on Diaphragm or membrane production processes.

Exclusive features

  • Multi parameter/range
  • Multistream capabilities (up to 6 streams)
  • Remote control
  • Powerful touchscreen interface
  • User programmable sampling sequences

SERES

Validated over the years in Chlorine production, chemical and petrochemical industries

SOLVAY, RHODIA, INEOS, FPG TAÏWAN, CIBA GEIGY, SANOFI, AVENTIS, PPG, ARKEMA, ASAHI GLASS, DE NORA…
Applications

Online Process Monitoring for

  • Chlorine production
  • Soda production
  • Electrochlorination
  • Gas emissions and liquid effluents treatment systems

 

aquagas_logo_500px

True technical evolution in Total Organic Carbon (TOC) online monitoring

 

aquagas_logo_500px

TOC Evolution

AquaGas introduces the TOC Evolution from SERES Environnement packed with true technical innovation empowering direct TOC online monitoring.

 

 

TRUE TOC ANALYSIS

The TOC Evolution allows accurate and complete measurement of  Total Organic Carbon featuring simultaneous and direct measurement of various TOC groups including Volatile Organic Compounds (VOC), Non-Purgeable Organic Carbons (NPOC) and Total Inorganic Carbons (TIC). In addition it is possible to complete the TOC Evolution water quality monitoring capacities by adding optional parameters Total Phosphorus (TP) and Total Nitrogen (TN) or the correlated Dissolved Organic Carbon (DOC)

 

TOC Evolution Measurement principle

 

PRINCIPLE

TOC Evolution measures the pollution load of Organic Carbons (OC) in any type of water by oxidation of the OC in CO2 allowing accurate Non Dispersive Infra Red measurement (NDIR) of the produced CO2 .

Reactor

New SERES patented high performance multifunctional reactor providing powerful and efficient oxidation. Its stripping function enables ultra-fast and optimal transfer of CO2.

Enhanced NDIR detection

Integral optical system for accurate, continuous and online IR measurement.

With a detection limit lower than 0.1 mg/l and fast analysis sequence ( less than 6 minutes), the TOC Evolution suits an unprecedented wide range of applications in the field of Water Quality Monitoring including but not limited to: industrial wastewater, process water and effluents/influents monitoring, Fresh water in water table, sources, drinking water purification and distribution processes, production of pure water such as demineralized, condensate water, steam production…
TOC online monitoring

FEATURES AND BENEFITS

Compact full stainless steel field proof enclosure

Intuitive colour touchscreen interface

Quick response time, high precision (+/- 3%) and repeatability (+/- 3%)

User programmable sampling sequences

Low maintenance and operation cost

Cost effective TRUE TOC online monitoring

Broad measuring range from 0-10mg/l to 0-5 g/l

TOC Evolution vuv - TOC online analyser

AT THE HEART OF INNOVATION

SERES environnement is continually implicated in the process of technological innovation. « We constantly re-invest in research and development in order to provide our clients with the most advanced technologies. For SERES, the notion of change is a permanent challenge. We work in partnership and collaboration with French and foreign research centres (such as the CNRS – the French National Centre for Scientific Research), Engineering Colleges and Universities. » SERES environnement makes 60% of its turnover on the export market in more than 35 countries with references in the Oil & Gas, Water treatment, Cement and Glass industry, Energy and large manufacturing companies…

SERES Environnement References