Articles

Suspended oil online monitoring (WQMS)

aquagas_logo_500px

 

The benefits of accurate suspended oil (oil in water) online monitoring are countless with regards to process and wastewater management, especially in the oil and gas industry. Continuous hydrocarbons monitoring enables complete environmental compliance, detailed process optimisation and reduced operating costs often by the use of a single instrument.

  • Improves systems nominal capacity
  • Ensures safe purge and filtration operations
  • Eliminates manual handling and intermittent attendances
  • Decreases oil losses and hydrocarbons released
  • Prevents bacterial contamination and equipment corrosion
  • ATEX and application specific engineered versions available
  • Maintenance Free, purge time counter and auto-stop function
  • Automated fully programmable system
  • Suitable for all type of Hydrocarbons
  • Intuitive interface through touch screen

Discharge management

OPAL-OIl Pollution Alarm - WQMS

Oil platforms, refineries and Tank farms generate produced water which requires close management. For every country in Oceania, there are regulations setting limits on the amount of hydrocarbons than can be disposed of overboard and a range of different lab techniques that can be used for reporting this amount. The OPAL and PAUTBAC II from SERES IR based analysers can provide continuous measurement of the oil concentrations in the discharge water from oil and gas processing and storage facilities.

Process optimisation


The OPAL and PAUTBAC II from SERES are respectively side stream analyser and oil tank de-watering systems based on IR light scattering. They not only can provide you with extremely accurate monitoring, but also sense for changes in the size of oil droplets and therefore in process conditions. Using the built in IR detector, the OPAL and PAUTBAC II analysers enable early detection of oil traces in all type of water, ensuring fast overview of the process conditions.
As the volume of your discharge water increases, you need a system that will meet your changing demands, work reliably and with minimal operator input required. Having provided hundreds of online monitoring systems worldwide, SERES is the best positioned to assist you along with your water management plan.

Oil Pollution Alarm

Every platform, refineries, industrial process (…) has to recover as much oil as possible, as efficiently as possible. In order to make improvements you need to understand how the current system is working. SERES Environnement manufactures the OPAL (IMO* certified) allowing real-time measurement of oil concentrations at the inlet and outlet of any separator, providing continuous on-line information about the effectiveness of your separators. The OPAL can also trigger a divert valve to route the produced water through a sand filter.

ODME OPAL

The OPAL is the last generation of detector designed for online and Real-time suspended Hydrocarbons monitoring. It uses Infra-Red scattering to enables early detection of oil in any type of water. Reagent’s free, the OPAL represents the most cost effective solution and matches a large range of application requirements.

* IMO International Maritime Organisation

Opal_Chassis_Base_120419

PAUTBAC II

automatic tank dewatering system

The PAUTBAC II is the best suited system to automate water drainage from oil storage tank. With its capacitive probe, it is a flexible, economical and reliable system capable to handle the crucial but time consuming task of oil tank dewatering without the need for human attendance. PAUTBAC II is designed to be install online and is a fully automatic system with adjustable threshold form 5 to 25% and no tank modifications required

 

AQUAGAS - WQMS -PAUTBAC3

A Teflon coated capacitive probe is inserted in an explosion proof circulation chamber mounted in the tank draining pipe work. The probe measures the dielectric constant to detect the interface between oil and water. The control unit processes the probe signal to control the tank purge valve operation.

 

key facts about automatic dewatering systems

  • Avoid product losses
  • Reducing amount of hydrocarbons discharged on waste water / cost for waste water treatment
  • Increase tanks capacity
  • Prevents tank corrosion
  • Eliminates labour costs dues to manual operation
  • Reduce risk of personal exposures to chemicals

 

PAUTBAC advantages

  • Completely automatic dewatering process
  • No maintenance needed
  • No calibration needed
  • Elimination of tank penetration
  • Easy installation without having to drain tank
  • Highly sensitive and reliable

 

AT THE HEART OF INNOVATION

SERES environnement is continually implicated in the process of technological innovation. « We constantly re-invest in research and development in order to provide our clients with the most advanced technologies. For SERES, the notion of change is a permanent challenge. We work in partnership and collaboration with French and foreign research centres (such as the CNRS – the French National Centre for Scientific Research), Engineering Colleges and Universities. » SERES environnement makes 60% of its turnover on the export market in more than 35 countries with references in the Oil & Gas, Water treatment, Cement and Glass industry, Energy and large manufacturing companies…

SERES Environnement References

 

Continuous IR Laser Spectroscopy – AP2e Online Gas Analysers

Applications and References

The ProCeas® and the LaserCEM® are based on the OFCEAS* measuring principle combined with a Low Pressure Sampling LPS (100 mbar absolute) developed and patented worldwide by AP2E (France), for the online analysis of several key gases in industrial, environmental and OH&S applications. It provides measurements with a very high spectral resolution in addition to an exclusive and powerful sampling method (no heated line nor treatment of samples) and an interference-free, fast and sensitive analysis, regardless of the matrix of the gas to be analysed.

 

Combustion cycle in refineries

oil-gas-industry_01

 

References: EXXON (optimising combustion in boilers), Fives PILLARD (optimisation tool for the production and the adjustment of burners for boilers).

With the environmental constraints, Oil companies are looking for optimum energy and environmental efficiency of their burners. Combined cycles boilers optimisation requires accurate simultaneous online monitoring of O2 and CO to ensure both compliance with standards and process control efficiency. The ProCeas, used to track real time the residual rate of O2 (less than 3%), ensures optimal combustion process automation. The accuracy of the measurement is a financial matter: according to the thermal performance of the burner, even a reduction of 0.1% of oxygen in excess represents millions of dollars of savings in the annual consumption of fuel.

CEMS in coal fired power station

shutterstock_132177536

Reference: IBIDEN Power Station – Simultaneous SO2/SO3 monitoring at the catalyst outlet according to the oxygen content variation have been done with the ProCeas® analyser.

SOx monitoring

SO2/SO3: AP2E also intends to enhance the approach aimed at combining environmental compliance and process optimisation, even if this seems less obvious to understand at first sight. If today SO2 is correctly measured, this does not fully reflect the sulphur emissions from combustion units subject to this requirement. In the presence of oxygen, SO2 does in effect form sulphur trioxide (SO3), a gas that is much more corrosive than SO2.

LaserCEM

Other chemical phenomena occur, particularly in denitrification (DeNOx), which in the presence of ammonia may lead both to an over-consumption of ammonia and to filter blockages. Therefore, not measuring SO3 entails the under estimation of sulphur emissions, and also additional maintenance costs and over-consumption of reagents. To have continuous and precise knowledge of the SO2 / SO3 couple enables the operator to choose the controlling conditions for limiting the formation of SO3 and its indirect costs.

Biogas

biogas

References: SP Technical Research Institute of Sweden, Rhodia (France). VEOLIA for its Centre de Recherche Energie Environnement Déchet (CREED, Centre for research on energy, environment, and waste).

The processing of gases from biomass (biogas, bio-methane) remains a key step in industrial processes for producing various types of bio-energy, a manufacturing process that requires optimizing.

It is therefore imperative to have the ability to calculate the calorific value of these new gases and to be able to quantify the impurities present there, in order to reduce the risk of damage to facilities, to react quickly in case of malfunction, and to certify the quality of finished products. AP2E has installed several equipment units within the facilities of various players of the world of biogas around the world. The purpose is to analyse the CH4 and CO2 content, as well as the residual concentration of H2S. This is a major impurity which transforms into sulphuric acid in the presence of some moisture. It is a very corrosive acid; consequently it is destructive for the facilities and the engines that burn biogas or bio methane.

The ability to analyse in the same multiplexing equipment the H2S content (which varies according to the time of day) of the « raw biogas » at the exit of the casing serves to determine the use of this biogas and assess its composition and quality. Other compounds may also be monitored by adding specific laser sources, such as the water content, in order to control the efficiency of the condenser. AP2E is also currently studying the analysis of siloxane, another sore point for energy recovery.

Using a continuous analyser as a means of industrial control and economic optimization of production units is for the control of biogas quality. During the combined cycles of biogas generation, the absence of H2S is crucial. It is a major impurity and a source of engine breakage. However, conventional means of analysis have trouble distinguishing CH4 from H2S. Therefore, operators are forced to adopt an excessively prudent approach in the treatment stage with active carbon: it is changed even before it is totally saturated. With a continuous, accurate, and reliable analysis of the level of H2S in the exit of the adsorption bed, we can instead use it until its saturation point and reduce overall costs.

Tests conducted on a site with a valuation of 1 MW showed that the amortization of the analyser could be performed based on this single criterion of active coal consumption in less than a year. Indeed the cost of a monthly activated carbon charge is equivalent to AUD $65,000.

 

Indoor air quality

Fgas monitoring system

References: In 2010, AP2E won an important contract with the DCNS for air quality control equipment for the confined interiors of submarines (on-board crew safety).

In April 2015, European regulations included formaldehyde as a proven carcinogenic product (CMR). In 2014, the ProCeas was certified approved method by EXERA (measurement, control, and automation equipment) and the LNE (National laboratory of metrology and testing).

AP2E is already working in the confined air field (submarines) and is interested in the building sector.  This new classification impacts devices monitoring the exposure to workers or to the public of formaldehyde, Freon, Ethanol… present in the indoor air of industrial sites or sites hosting the public. The ProCeas® Formaldehyde continuously measures these changes with a minimum 10 ppm threshold (maximum 1%).

Food processing industry

The drying field is another good example of application where energy efficiency has to be kept in mind, especially when processing food powders. Water monitoring is useful for avoiding excessive energy consumption (adjust dryer load to obtain minimise the residual H2O content). Online monitoring of carbon monoxide (CO) answers safety concerns. When food powders are dehydrated, the conditions may be such that CO is generated in the dehydrator. Once conditions for generating CO are present, CO tends to increase its concentration very quickly. To keep the CO below potentially dangerous level, it is necessary to detect the first signs of CO which appear above the levels already present in the atmosphere. The ProCeas is actually in operation within ten drying towers in dry food production facilities and has been chosen as the most reliable monitoring equipment by companies leading food processing industry.

Engine emissions testing

The automobile engines sector also remains a major target. With the arrival of the new EURO VI standards since September 2014, manufacturers have been forced to measure many pollutants (NO, NO2, N2O, NH3, CO2, CH4, and ethanol).

ProCeas

Successful testing with ProCeas® was conducted around the world:

– NH3 at Renault and VOLVO (France)

– N2O at Volkswagen (Germany)

– NH3 at General Motors (USA)

– NH3, N2O, NO, NO2 at Sensor Inc. (USA)

In the USA with Sensors Inc. – (www.sensors-inc.com): in May 2012, AP2E signed a contract for supplying ProCeas® analysers for the real-time control of gas emissions of engine test benches in the automotive industry. Sensors Inc. is the leading American manufacturer of real-time testing equipment for gas emissions in the transportation industry. The new range of measuring instruments is marketed in the US under the name of SEMTECH LASAR and it consists of four modules (NH3, N2O, NO, and NO2), each capable of analysing three gases simultaneously.

Natural gas

To be used in the best conditions, so that it limits damage and maintenance of equipment, natural gas must be rid of impurities, especially hydrogen sulphide (H2S), which is very corrosive, and all traces of moisture. Current filtration systems run against, among other things, the problem of measuring residual traces of these impurities because no reliable continuous analysis system was available so far. Today the main players in the « Oil & Gas » market deem the ProCeas® as the most efficient natural gas analyser for continuously and simultaneously measuring traces of H2S (LoD under 50 ppb) and H2O (under 50 ppm), without interference, without any dependence vis-à-vis the constitution of the gas, and with response times under a few seconds

Pure Gas

Pure gases online analysis

 

The ProCeas® is used by pure gases manufacturers to control the purity of the gas along production line (N2, H2, O2…).

Syngas

ProCeas H2O CO O2

References: Total, CEA Grenoble, IFP (French Petroleum Institute), GDF Suez, VEOLIA (CREED), Arkema

H2O, CO, CO2, and H2 rates

Praxair uses the ProCeas® as an online analyser of H2O, CO, CO2, and H2 rates, in a process for producing syngas from the gasification of coal, oil residue, pet coke, and biomass. This syngas is then used either as a source of energy in a heat and electricity combined cycle process or in a Fischer Tropsch process for producing second-generation bio-fuel. This process requires that the residual H2S generated by gasification have a value of less than 1 ppm to avoid the destruction of the polymerization catalysts.

CO, CO2, H2O, CH4, H2S, NH3 and H2

Midrex is a steel manufacturer that uses a gasification process similar to Praxair’s in order to cogenerate the electricity and heat needed in the manufacture of its steel. AP2E delivered to Midrex complete solutions that have enabled it on the one hand to measure the calorific value of these synthetic gases (by measuring CO, CO2, H2O, CH4, and H2) and also the presence of impurities such as H2S and NH3.

H2, H2O and Cl2

Today, the ProCeas® provides what no other infra-red laser technique could: the direct measurement of hydrogen (H2) and water (H2O) in chlorine (Cl2) without reagents or discharges, and interference-free. The ProCeas® performs measurements with a very high spectral resolution of very low concentrations (under a few ppm), with response times under a few seconds. This analyser also provides a control of the drying (H2O) in a chemical process at Arkema.

*Optical Feedback Cavity Enhanced Absorption Spectroscopy: technology developed and patented by the University Joseph Fourier (France), coupled to a Low Pressure Sampling(100 mbar absolute) developed and patented worldwide by AP2E, for the on-line analysis of different gases. By the end of 2010, after two years of R & D studies, the AP2E ProCeas®was the award recipient of the USA “R & D 100” which rewards the 100 most innovative global technologies of the year.


AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

contrôle environnemental

OFCEAS & Low Pressure Sampling

Continuous Emissions Monitoring and Process Control

Starting in 2012, AP2E launched the industrialisation of the ProCeas® and LaserCEM® product range, the continuous and multigas analysers using OFCEAS* patented laser spectrometry. This analyser range is based on several innovations, providing very high performance in terms of response time (less than a few seconds) and great accuracy of the analyses (wide dynamic range from ppb to %):

OFCEAS, CONTINUOUS INFRA-RED LASER SPECTROSCOPY TECHNOLOGY

The ProCeas® and the LaserCEM® are based on the OFCEAS coupled to a Low Pressure Sampling LPS (100 mbar absolute) developed and patented worldwide by AP2E (France), for the online analysis of several key gases in industrial, environmental and OH&S applications. It provides measurements with a very high spectral resolution in addition to an analysis system with a simplified sampling (no heated line nor treatment of samples) and an interference-free, fast and sensitive analysis, regardless of the matrix of the gas to be analysed.

ProCeas

The OFCEAS technology essentially differs from the CRDS (Cavity Ring Down Spectroscopy or Spectroscopy by resonance damping time) technology by its feedback principle: a part of the emitted radiation is returned from the chamber to the laser, enabling the tuning of the laser and the cavity resulting a resonance phenomenon. With a volume of only 15 cm3, the measuring cavity or cell is equipped with mirrors whose reflectivity exceeds 99.99%, providing an optical path between 1 and 10 km (approx. 10 meters in conventional technologies). The immediate consequence of this phenomenon is the identification of very intense absorption peaks with a very narrow spectral width. Given that the source used is a continuous laser, the system presents very high measurement stability: there is no zero drift and no need for new calibrations.

LOW-PRESSURE SAMPLING SYSTEM

The Low Pressure Sampling (LPS) System allows reducing the sample dew point (vapour pressure) to prevent the risk of condensation. The sampling method is achieved by the use of a sonic nozzle which allows reducing the sampling pressure down to 100 mbar. In these conditions the ambient temperature is almost always above the dew point eliminating the risk of condensation.

r4

  • No Sample heated line required to eliminate condensation: low power consumption, no related ongoing maintenance
  • True Direct Extractive CEMS/Process analyser (no dryer or scrubber)
  • No risk of absorption/desorption typical of high SO2/SO3 application
  • Low pressure accentuate the gas finger print
  • Cost effective multipoint monitoring
  • Standard system comply with ATEX standards

The integrity of the sample is therefore ensured. The very low airflow ensures a verylow response time and a minimal contamination of the system.

OFCEAS Detection limits

All these points enable to both increase the detection sensitivity and  simultaneously reduce the noise, which permits the detection of gases at very low levels of sensitivity (traces of H2S – LOD under 50 ppb, or traces of H2O – under 1 ppm).

ProCeas

Complete pre-calibrated multicomponent (H2S, CO, CO2, H2, H2O, HCl, HCN, HF, N2O, NH3, O2 and CH4) laser Infrared Spectrometer designed for online monitoring of combustion process, natural gas (LNG), pure gas (trace) and ambient air (trace).

 

LaserCEM

The LaserCEM is a complete pre-calibrated multi-component (NO, NO2, NOx, SO2, CO, HCl, CO2, H2O, H2S, NH3, N2O, COS, SO3, CH4, HF) laser Infrared Spectrometer designed for Continuous Emissions Monitoring and compliant to standard EN 15267-3 : 2008 and QAL 1 de EN 14181 . With the announcement of the continuous measurement of SO3 (sulphur trioxide) at the exit of combustion units, AP2E represents the link from an industrial point of view between regulatory measurements (EMC) and optimizing production processes. If SO2 is now properly measured, it does not fully reflect the sulphur emissions from combustion units subject to this requirement. In the presence of oxygen, SO2 does in effect form sulphur trioxide (SO3), a gas that is much more corrosive than SO2. And other chemical phenomena occur, particularly in de-nitrification (DeNOx), which in the presence of ammonia may lead both to an over-consumption of ammonia and to filter blockages. Not measuring SO3 entails the under estimation of sulphur emissions, and also additional maintenance costs and over-consumption of reagents. To have continuous and precise knowledge of the SO2 / SO3 couple enables the operator to choose the controlling conditions for limiting the formation of SO3 and its indirect costs.

*Optical Feedback Cavity Enhanced Absorption Spectroscopy: technology developed and patented by the University Joseph Fourier (France), coupled to a Low Pressure Sampling (100 mbar absolute) developed and patented worldwide by AP2E, for the on-line analysis of different gases. By the end of 2010, after two years of R & D studies, the AP2E ProCeas® was the award recipient of the USA « R & D 100 » which rewards the 100 most innovative global technologies of the year.

 


AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

 

True technical evolution in Total Organic Carbon (TOC) online monitoring

 

aquagas_logo_500px

TOC Evolution

AquaGas introduces the TOC Evolution from SERES Environnement packed with true technical innovation empowering direct TOC online monitoring.

 

 

TRUE TOC ANALYSIS

The TOC Evolution allows accurate and complete measurement of  Total Organic Carbon featuring simultaneous and direct measurement of various TOC groups including Volatile Organic Compounds (VOC), Non-Purgeable Organic Carbons (NPOC) and Total Inorganic Carbons (TIC). In addition it is possible to complete the TOC Evolution water quality monitoring capacities by adding optional parameters Total Phosphorus (TP) and Total Nitrogen (TN) or the correlated Dissolved Organic Carbon (DOC)

 

TOC Evolution Measurement principle

 

PRINCIPLE

TOC Evolution measures the pollution load of Organic Carbons (OC) in any type of water by oxidation of the OC in CO2 allowing accurate Non Dispersive Infra Red measurement (NDIR) of the produced CO2 .

Reactor

New SERES patented high performance multifunctional reactor providing powerful and efficient oxidation. Its stripping function enables ultra-fast and optimal transfer of CO2.

Enhanced NDIR detection

Integral optical system for accurate, continuous and online IR measurement.

With a detection limit lower than 0.1 mg/l and fast analysis sequence ( less than 6 minutes), the TOC Evolution suits an unprecedented wide range of applications in the field of Water Quality Monitoring including but not limited to: industrial wastewater, process water and effluents/influents monitoring, Fresh water in water table, sources, drinking water purification and distribution processes, production of pure water such as demineralized, condensate water, steam production…
TOC online monitoring

FEATURES AND BENEFITS

Compact full stainless steel field proof enclosure

Intuitive colour touchscreen interface

Quick response time, high precision (+/- 3%) and repeatability (+/- 3%)

User programmable sampling sequences

Low maintenance and operation cost

Cost effective TRUE TOC online monitoring

Broad measuring range from 0-10mg/l to 0-5 g/l

TOC Evolution vuv - TOC online analyser

AT THE HEART OF INNOVATION

SERES environnement is continually implicated in the process of technological innovation. « We constantly re-invest in research and development in order to provide our clients with the most advanced technologies. For SERES, the notion of change is a permanent challenge. We work in partnership and collaboration with French and foreign research centres (such as the CNRS – the French National Centre for Scientific Research), Engineering Colleges and Universities. » SERES environnement makes 60% of its turnover on the export market in more than 35 countries with references in the Oil & Gas, Water treatment, Cement and Glass industry, Energy and large manufacturing companies…

SERES Environnement References