Measurement of biogen CO₂-emissions in the frame of CO₂-emissionstrading

Gerhard Kahr Genius 5-Instruments GmbH

AGENDA

1	European regulation to report greenhouse gases
2	Calculation based methology to analyse fossile CO2
3	Measurement based methology using Genius5 pmCTrace
4	Reference pmC of 100% biogenic
5	Summary

L 181/30

Official Journal of the European Union

12.7.2012

COMMISSION REGULATION (EU) No 601/2012

of 21 June 2012

on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003[87]EC of the European Parliament and of the Council

(Text with EEA relevance)

THE EUROPEAN COMMESSION,

ENC

Having segard to the Tireaty of the Functioning of the European Union.

Having segard to Directive 2003[87]EC of the European Parlament and of the Council of 13 October 2003 stabilishing a otherne for greenhouse gate emission allowance trading within the Community and assending Council Directive 96[61]EC () and in particular Article 14(1) thereof,

Whereas:

'support scheme' within the meaning of Article 2(k) and consequently financial support within the meaning of Article 17(1)(c) of Directive 2009]28/EC.

(3) For reasons of consistency, definitions laid down in Commission Decision 300/9/430/EC of 5 june 2009 on the detailed interpretation of the artistion activities land in Annex 1 to Directive 2003/87/EC of the European Parliament and of the Council (*) and Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the gaological storage of carbon dioxide and amending Council Directives 2000/80/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EQ) No 1013/2006 (*) should apply to this Regulation.

- Defines ambitious requirements for the determination of fossile greenhouse gas emissions from industry
- Opens door for measurement based methology to analyse fossile CO₂ emissions

- (6) It is necessary to establish basic monitoring methodologies to minimise the burden on operators and aircraft operators and facilitate the effective monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC. Those methodologies should include basic calculation and measurement methodologies. The calculation methodologies should be further differentiated into a standard methodology and a mass balance methodology. Flexibility should be provided to allow a combination of measurement methodologies, standard calculation methodology and mass balance within the same installation, provided the operator ensures that omissions or double counting do not occur.
- Defines flexibility to combine measurement methodologies, standard calculation methodology and mass balance.

Article 28

Measurement systems under the operator's control

1. For determining the activity data in accordance with Article 27, the operator shall use metering results based on measurement systems under its own control at the installation, provided that all of the following conditions are complied with:

Uncertainty mets the trier

Include the uncertainty of Calibration

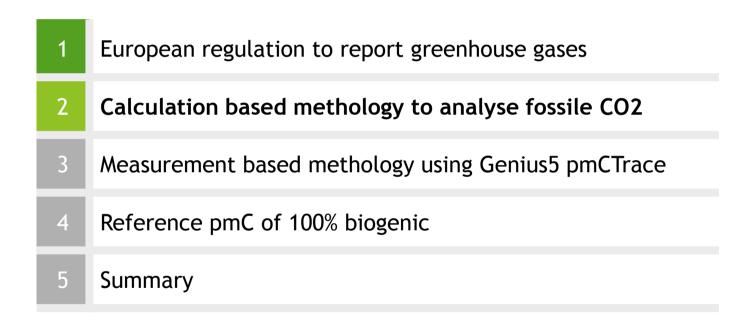
Article 39

Determination of biomass and fossil fraction

1. Where subject to the tier level required and to the availability of appropriate default values as referred to in Article 31(1), the biomass fraction of a specific fuel or material are determined using analyses, the operator shall determine that biomass fraction on the basis of a relevant standard and the analytical methods therein, and apply that standard only if approved by the competent authority.

Two choices to determine the biogen fraction

- Analysing the fuel using EN 15440
- Analysing the stack emissions using ISO 13833


Commission Regulation 601/2012 accuracy levels for reporting

Material	Unit	Tier 4	Tier 3	Tier 2	Tier 1
Commercial standard fuel	[t] or [Nm³]	± 1,5%	± 2,5%	± 5%	± 7,5%
Other gaseous or liquid fuels	[t] or [Nm³]	± 1,5%	± 2,5%	± 5%	± 7,5%
Solid fuels	[t]	± 1,5%	± 2,5%	± 5%	± 7,5%

Defines ambitious accuracy levels for determining the annual fuel consumption with

- Caloric value [MJ/t]
- Emission factor [t CO₂/MJ]
- Biogenic carbon [C_{bio}/C_{total}]

AGENDA

Genius5-Instruments GmbH

Samples of alternative fuels

How to prove that biogenic carbon > 97% Directly from the fuel ? -> Easier to analyse the stack emissions

Samples of alternative fuels

waste derived fuels

30-60% biomass

industrial waste 30 – 50% biomass

Gum residues

20 – 40 % biomass

But how to get a representative sample directly from the fuel ? -> Easier to analyse the stack emissions

Genius5-Instruments GmbH

es

tvr

- 40 %

biomass

Fossile and biogen fraction in mixed alternative fuels - Art. 39

Tier 2: determination using lab analysis = Typ II portion biomass Art. 39 (1)

- e.g. every 5.000 t (min. 4x/year) for soild residues
- analytical methods according DIN EN 15440:

Selectice solution method

sample amount = 1 g

¹⁴C-determination from waste

sample amount = 1 mg or less

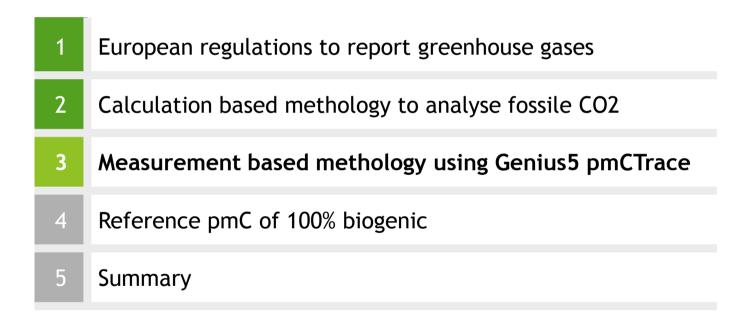
Experiences:

- To produce representative sample is crucial
- Selective solution method is not suitable for gum, tyres and biodegradeable polymers

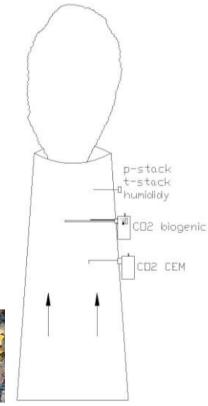
Genius5-Instruments GmbH

EN 15440 to determine the biogen CO₂ fraction in solid samples

selective sollution method



¹⁴C-method (radionuclid-method)


Is it representative to do the analysis from solid material ?

AGENDA

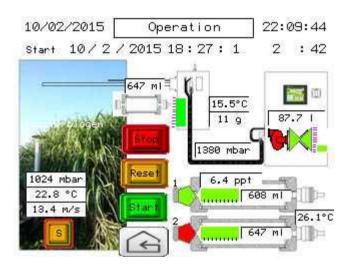
Analysing the stack emissions to increase accuracy

Big size incinerators:

- Measurement of CO₂ using CEMS
- Measurement of Volume flow with v, t, p and stack area
- Proportional CO₂ sampling using the pmCTrace

Genius5-Instruments GmbH

Standards to determine biogenic CO₂ fraction

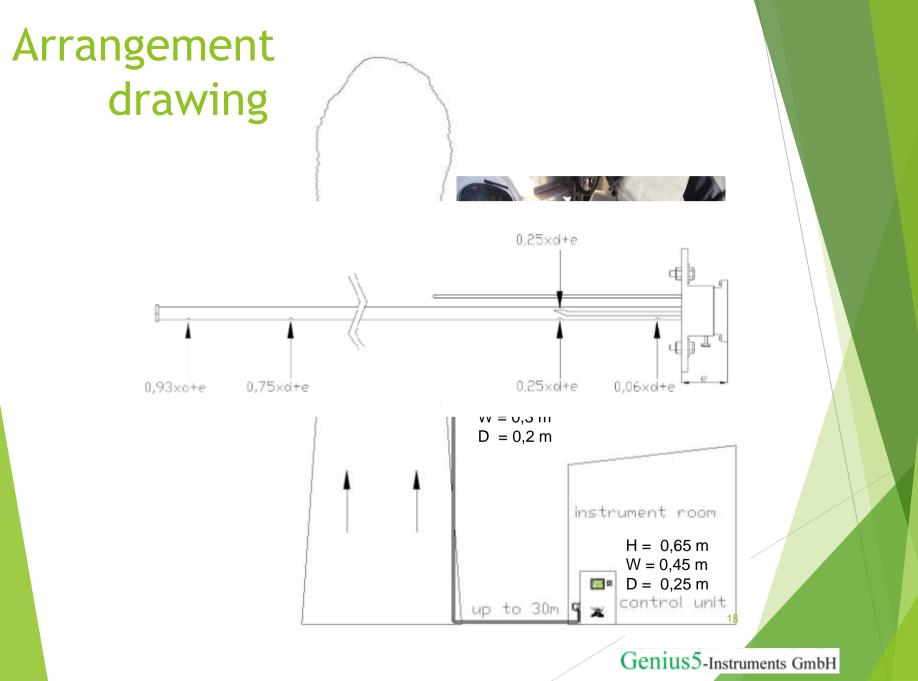

ISO 13833:2013 [©]

Stationary source emissions -- Determination of the ratio of biomass (biogenic) and fossil-derived carbon dioxide -- Radiocarbon sampling and determination

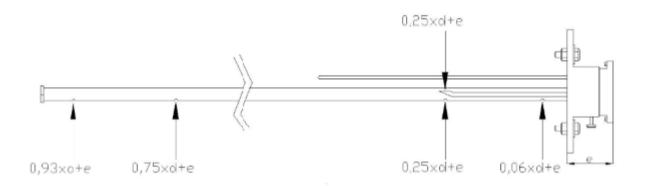
Abstract	Preview ISO 13833:2013		FORMAT	2	LANGUAGE
O 13833.2013 specifies sampling methods and analysis methods for e determination of the ratio of biomass- and fossil-derived carbon oxide (CO-) in the CO- from exhaust gases of stationary sources.		~	POF +	C C	English 🗸
based on the radiocarbon (1 ⁴ C isotope) me application is a biogenic to total CO ₂ fracti is a biogenic to total CO ₂ fraction of 0,02 to	ethod. The lower limit of on of 0,02. The working range	e lower limit of	PAPER		English ∨
			POF		Russiar ∨
General inform	ation			CHE	158

- Validated standard
 - Proportional sampling from flue gas
- Minimum sampling time
 2 hours
- Maximum sampling time 1 month
- Sample analysis using LSC or High acceleration MS

Principle of ISO EN 13833


- Extraction of primary stream from stack
- Extraction of small flow proportional to the flue gas velocity (around 1 ml/min)
- Absortion of extracted CO2 to an alkaline adsorbent
- ¹⁴C analysis of the absorbed CO2 with high acceleration mass spectrometer

Step 1: Long term proportional sampler



Genius5-Instruments GmbH

Arrangement drawing inside stack

Installation position at measurement

Minimum flange size: 3" All flange sizes available

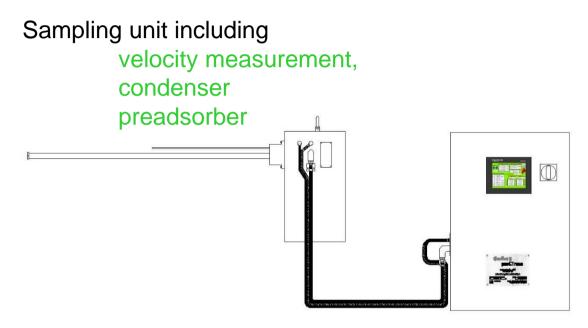
Genius5-Instruments GmbH

Installation pictures installation at biomass incinerator

In Control room

at stack

Flange detail


20

Installation pictures at cement plant

Genius5-Instruments GmbH

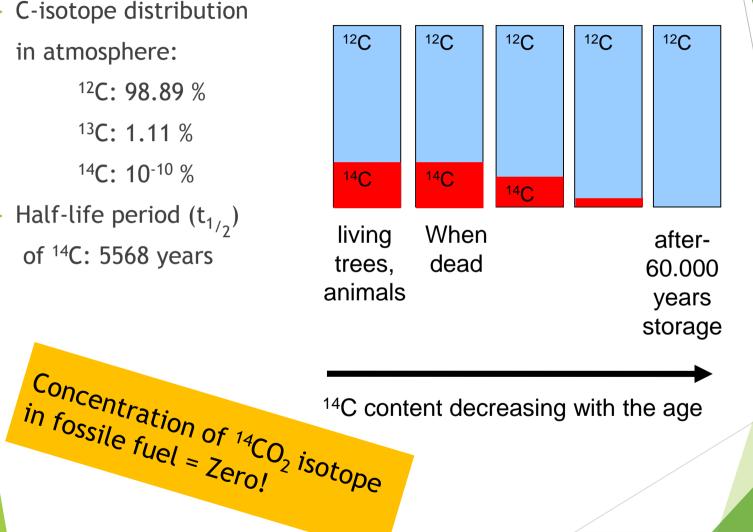
Function of components

Controller cabinett including touchsreen display and controller flow division system massflow controller to adjust volume flow to velocity in stack 2 pcs of CO2 absorbing cartridges

22

Step 2: ¹⁴C-measurement in the laboratory

High Accelleration Mass spectrometry (AMS) uncertainty <u>+</u> 0,3 pmC


Proportional-Szintillations-counter (PSM) uncertainty <u>+</u> 2 pmC

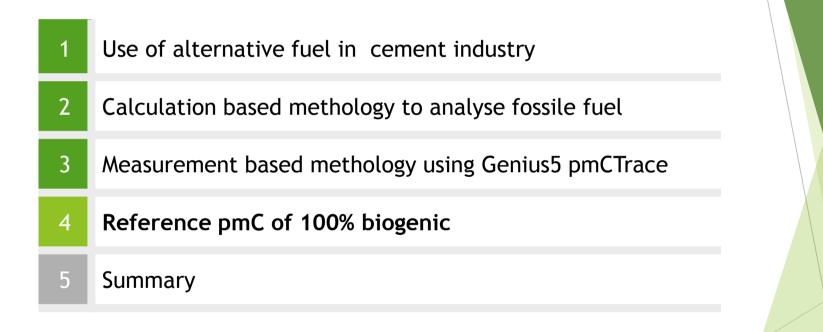
Principle of ¹⁴C method

C-isotope distribution in atmosphere: ¹²C: 98.89 % ¹³C: 1.11 %

¹⁴C: 10⁻¹⁰ %

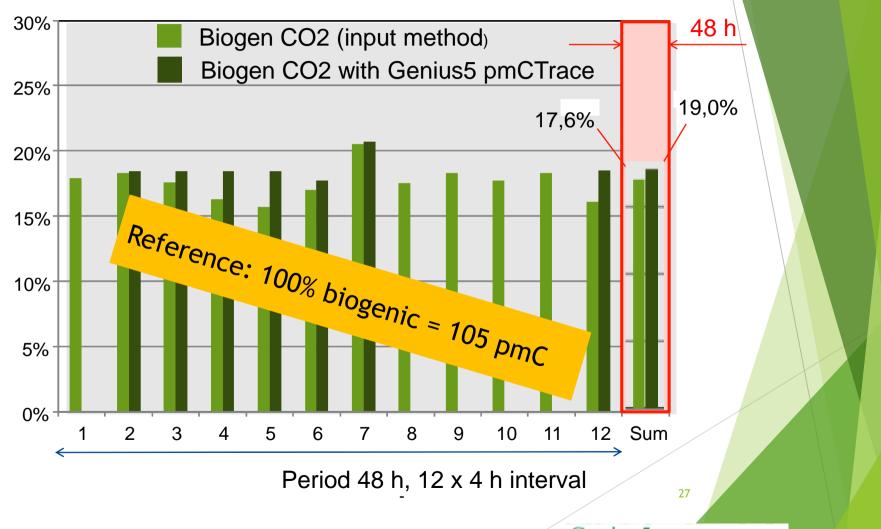
► Half-life period (t_{1/2}) of ¹⁴C: 5568 years

Annex VIII - Accuracy requirements to measure fossil CO2 from emissions


Experiences for uncertainty: • U _{volume} = 1,24 % • U _{CO2} = 1,63 % • U _{biomass} < 1 %
Source: VDI report Nr. 2215, 2014

Accuracy requirements

Tier 4
± 2,5 %
N.A.
± 2,5 %


Total mass of CO₂ /year
 biogen Fraction of CO₂

AGENDA

Result of 48 hours comparison test Input versus measurement method

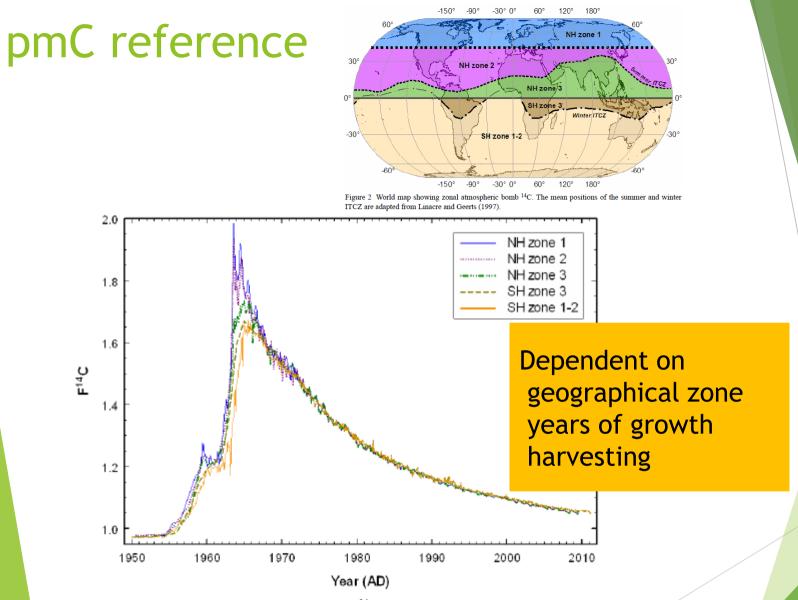
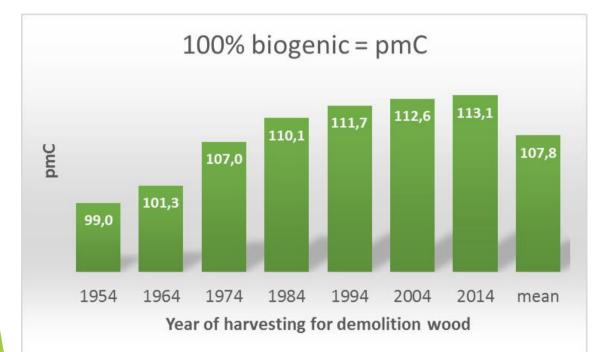
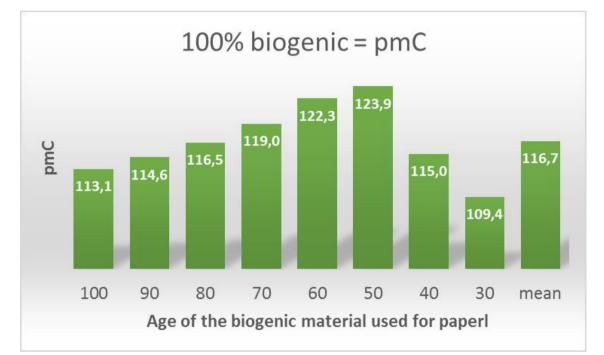



Figure 5 Compiled (extended) monthly atmospheric ¹⁴C curves for 5 different zones (NH zone 1, NH zone 2, NH zone 3, SH zone 3, and SH zone 1-2). The compiled data sets are reported in Tables S3a-e (online Supplementary Material).

28


pmC reference - demolition wood 100 % biogenic = 107,8 pmC

Typical tree = spruce Typical age = 100 years harvest 1984 as a mean

29

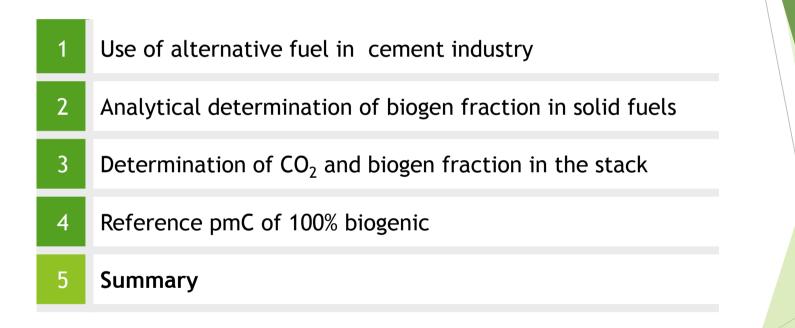
pmC reference of paper fraction 100 % biogenic = 116,7 pmC

Typical trees = spruce, poplar Typical age = 30 - 100 years harvest in 2012 - 2014

30

pmC reference of fresh biomass 100 % biogenic = 105 pmC

Typical age = < 1 year growing in the year of harvest



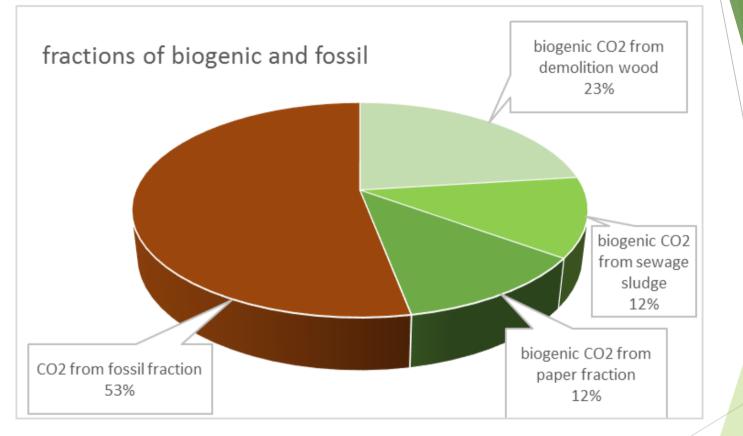
Genius5-Instruments GmbH

AGENDA

Genius5-Instruments GmbH

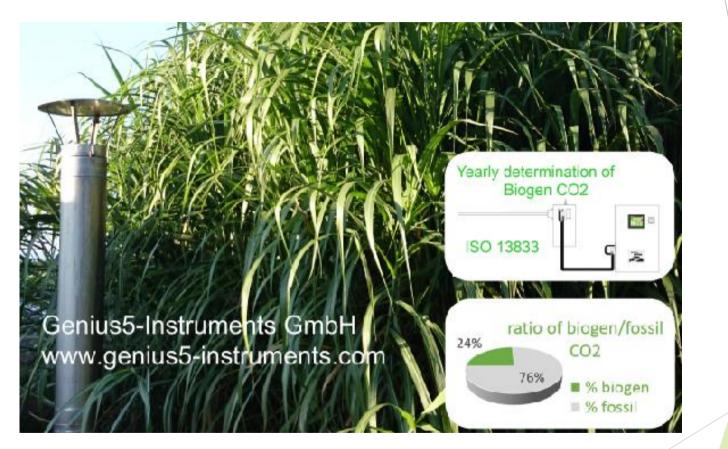
Summary

- To increase accuracy the determination of the biogen fraction with measurement method requires the splitting into 3 fractions
 - % of fresh biomass
 - % of biomass from paper/wood (harvest < 3 years)</p>
 - % of biomass from demolitian wood (> 3 years)


Summary

- Indiviual reference pmC of 100% biogenic fraction
 - 105 pmC for fresh biomass
 - Straw, elephant grass, bamboo,
 - Rice shells
 - Sewage sludge
 - 117 pmC for paper made from wooden fibres
 - Based on trees harvested recently with an age of 30 -100 years
 - 108 pmC for demolition wood
 - used 30-60 years before thermal recovery
 - Base on trees with 80-120 years age

Summary -Calculation of total biogenic fraction


 $f_{bioC} = pmC_{measured} * \left(\frac{m\%_{freshbiomass}}{104.8} + \frac{m\%_{demolition\,wood}}{107.8} + \frac{m\%_{paperfraction}}{116.7}\right)$ $f_{f_{ossilC}} = 1 - f_{bioC}$ $m\%_{freshbiomass} + m\%_{demolition wood} + m\%_{paperfraction} = 100$ With f_{bioC} Biogenic fraction pmC_{measured} pmC value received from ¹⁴C lab m%_{freshbiomass} Mass fraction of recently growing biomass e.g.: sewage sludge, straw, rice shells, m%_{demolitionwood} Mass fraction of biomass, used for construction $m\%_{paperfraction}$ Mass fraction of the paperfraction

Summary

Genius5-Instruments GmbH

Thank your for your interest

Gerhard Kahr info@genius5-instruments.com

37